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Summary e e

Sepsis and peritonitis have not lost much of their danger for patients. The
mortality rate in peritonitis has only marginally decreased during the last 30
years despite aggressive surgical and sophisticated intensive care treatment. In
intra-abdominal infection and peritonitis source control remains the mainstay
of treatment, although general principles and denominators of successful
source control need to be established.

Endotoxin has been recognized as a major player in the pathogenesis of
sepsis and its significance in clinical disease has been investigated in clinical
studies for more than 20 years. Since the Sixties there is a growing interest in
the effect of antibiotics and other compounds on the release of endotoxin. The
effect of antibiotics on the release of endotoxin and inflammatory parameters,
e.g., cytokines, remains to be clarified despite a growing body of in-vitro stud-
ies, animal studies and a few clinical studies. The purpose of this review is to
evaluate the evidence of endotoxin release in clinical studies and the effect that
antibiotic treatment may have in-vitro, in-vivo and in clinical studies on endo-
toxin and cytokine release.

In-vitro antibiotic-induced endotoxin release may depend on antibiotic class,
presence of serum, type of organism, site of antibiotic action and Gram-stain.
Endotoxin release may be different in late or early lysis, proportional to the
number of killed pathogens. Morphology of bacteria may have an impact on
endotoxin release and phagocytosis.

Antibiotic-treated animals may show higher endotoxin levels with a higher
survival rate than untreated animals. Plasma endotoxin may increase despite
decreasing bacteremia. There may be a similar killing rate by different antibi-
otics but a difference in endotoxin release. Intestinal endotoxin does not neces-
sarily correlate to the level of Gram-negative bacteria. However, the alteration
of the gut content by pretreatment may be associated with reduced endotox-
emia and increased survival. Antibiotic-induced endotoxin release may be dif-
ferent depending on the type of infection, the location of infection, the viru-
lence of strains, Gram-stain, mode of application and dosage of antibiotic.
Different antibiotics may induce the release of different forms of endotoxin
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which may be lethal for sensitized animals. The combination of antibiotics with
inhibitors of endotoxin or the pro-inflammatory response may be responsible
for increased survival by decrease of endotoxin release.

The clinical significance of antibiotic-induced endotoxin release is document-
ed only in a few clinical disorders, e.g., meningitis, urosepsis. The difference in
endotoxin release by PBP 2-specific antibiotics, e.g., imipenem, and PBP 3-spe-
cific antibiotics, e.g., ceftazidime, may not be visible in each study. Patients
with increased multi-organ failure (MOF) scores may profit from treatment with
antibiotics known to decrease endotoxin.

In conclusion, the clinical significance of antibiotic-induced endotoxin
release remains to be clarified. Type of pathogen and its virulence may be
more important than recently suggested. Gram-positive pathogens were just
recently recognized as an important factor for the development of the host
response. In case of fever of unknown origin in intensive care patients either
failure of treatment, e.g., failure of source control in intra-abdominal infection,
or a side effect of antibiotic treatment, e.g., endotoxin release, should be con-

sidered as a cause of the fever.
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INTRODUCTION

Sepsis and peritonitis have not lost much of
their danger for patients. The mortality rate in
peritonitis has only marginally decreased during
the last 30 years despite aggressive surgical and
sophisticated intensive care treatment. In intra-
abdominal infection and peritonitis source con-
trol remains the mainstay of treatment,
although general principles and denominators
of successful source control need to be estab-
lished !. Endotoxin has been recognized as a
major player in the pathogenesis of sepsis and
its significance in clinical disease has been
investigated in clinical studies for more than 20
years 23. Since the Sixties there is a growing
interest in the effect of antibiotics and other
compounds on the release of endotoxin 4. It
has been demonstrated that antibiotics may
induce endotoxin release from bacteria on
intravenous inline filters 5. The possibility of
severe side effects of antibiotic treatment is
known and obvious even in antibiotics used for
minor infections, e.g., sinusitis, and otitis media
6, The analysis of parameters of betalactam
antibacterial activity, antibiotic-induced release
of bacterial endotoxin and the interrelationship
between pharmacokinetics and pharmacody-
namics of antibiotics has been recently pub-
lished 7.

The effect of antibiotics on the release of
endotoxin and inflammatory parameters, e.g.,
cytokines, remains to be clarified despite a

growing body of in-vitro studies, animal studies
and a few clinical studies. The purpose of this
review is to evaluate the evidence of endotoxin
release in clinical studies and the effect antibiot-
ic treatment may have in-vitro, in-vivo and in
clinical studies on endotoxin and cytokine
release.

THE SIGNIFICANCE OF ENDOTOXIN
IN CLINICAL INFECTION AND SEPSIS

Endotoxin has been studied in a variety of
clinical disorders, e.g., peritonitis, infections in
neutropenic patients, obstructive jaundice, and
trauma/hemorrhage.

In peritonitis and septic shock there seems
to be an obvious relationship due to the patho-
genesis, e.g., bowel perforation and Gram-neg-
ative pathogens, to endotoxin release. Beger
has observed endotoxin in 63% of peritonitis
patients. In 8 of 9 patients with a fatal out-
come within 72 hours endotoxin was detected
8. But even in patients with multiple organ fail-
ure due to sepsis there may be no difference in
endotoxemia between survivors and non-sur-
vivors and endotoxemia may be present in
patients with Gram-positive infections 9.
Endotoxin plasma levels in patients with sepsis
syndrome were significantly higher in non-sur-
vivors compared to controls, but not to sur-
vivors 10, Peritoneal rather than plasma endo-
toxin levels were significantly higher in patients
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with severe secondary peritonitis, levels may
differ between survivors and non-survivors and
may be part of an immuncompartmentalized
inflammatory response !!'. Endotoxin was
detected in 51.2% of patients with severe sep-
sis or septic shock and was associated with a
higher incidence of bacteremia; however, it did
not correlate with organ dysfunction or mortali-
ty 12. This is in agreement with a recently pub-
lished European multicenter study on the signif-
icance of immunological surrogate parameters
as a prognostic model for multi-organ failure
and death. Endotoxin did not predict the devel-
opment of severe complications or fatal out-
come. Endotoxin neutralizing capacity (ENC) in
surgical intensive care patients indicated com-
plications and outcome 13,

Immuno-suppressed patients or patients
with hematological differences may differ in
their response to endotoxin due to a lack of
granulocyte activity. Endotoxemia may be
found in infected patients with fever, in patients
with fever of unknown origin, or even in
afebrile patients without any cause for endotox-
emia 4. Gram-negative pathogens did not
always produce endotoxemia in these patients
15, One study reported a correlation of endo-
toxemia with fever in septic neutropenic
patients 16, Endotoxin determination may be
influenced by many factors in serum of patients
17_ Endotoxin test systems may have a sensitivi-
ty of 69.7% and a specificity of 96.3% for
Gram-negative infections in febrile patients with
hematological malignancies, but only 39.7% of
endotoxemic samples grew Gram-negative
pathogens 8. However, endotoxin determina-
tions are not recommended for routine diagno-
sis of sepsis in patients with hematological
malignancy 1°.

Endotoxin may be released during major
surgical procedures. Endotoxemia was common
before (68%), during (70%), and after (81%)
surgery in jaundiced patients 20, Although 60%
of patients with surgery for obstructive jaundice
were endotoxemic, there was no correlation
with clinical sepsis or Gram-negative infection
detectable 2!, In liver transplant patients,
Hamilton et al. observed only a transient endo-
toxin elevation during clamping of liver vessels
without any correlation to TNF-alpha or the
occurrence of complications 2. Increased plas-
ma endotoxin levels were observed during and
after elective abdominal aortic aneurysm repair

with a significant and simultaneous increase of
pro- and anti-inflammatory cytokine release but
there was no correlation with clinical or labora-
tory parameters 23. Translocation of bacteria
and endotoxin could be detected in mesenteric
lymph nodes, but systemic concentrations of
endotoxin and inflammatory parameters did not
correspond to levels within mesenteric lymph
nodes 24, Translocation of endotoxin may be
related to a failure in the barrier function of the
bowel mucosa. Endotoxemia was found in 88%
of patients with ulcerative colitis and 94% with
Crohn’s disease, which correlated to disease
activity, disease extent and endotoxin core anti-
bodies 25. The clinical significance, however,
remains unclear 2¢. Trauma and hemorrhage
are known to be associated with endotoxin
release. CD14 expression in injured patients
may discriminate between infected and non-
infected patients 27. Patients with urinary tract
infections had higher endotoxin levels but there
was a lack of correlation with temperature,
leukocytes and CRP 28, Translocation of endo-
toxin has been demonstrated in some studies
after thermal injury; however, in a recent report
by Carsin the significance of translocation of
bacteria and endotoxin has been challenged #9.
Intravascular coagulation and endotoxin con-
centrations may reflect septic DIC 30,

ANTIBIOTIC-INDUCED ENDOTOXIN RELEASE
IN IN-VITRO STUDIES

It was demonstrated that antibiotic adminis-
tration may induce the release of endotoxin
from bacteria retained on intravenous inline fil-
ters in 1975 by Rusmin et al 3. Rosenthal
revealed by scanning and transmission electron
microscopy that antibiotics caused the forma-
tion of numerous protrusions or blebs on the
surface of E. coli with apparent release of
membrane vesicles from cells 3!, which was
confirmed by Goodell who demonstrated that
penicillin greatly increased the shedding of lipid
and LPS into the medium 32, In case penicillin
did not liberate free endotoxin, the peptidogly-
can layer was present after 2 h of treatment
with penicillin, but was undetectable after 20 h
33, Cohen stated that in antibiotic-induced
endotoxin release the rate of cell death is less
important than the site of antibiotic effect.
Ciprofloxacin induced endotoxin release,
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whereas gentamicin did not, despite an equally
rapid bactericidal effect. Ciprofloxacin is
thought to act mainly on DNA gyrase; howev-
er, these results indicated that it might also act
on the bacterial wall 3¢, Kusser and I[shiguro
further demonstrated the inhibitory action of
aminoglycosides on LPS release 35 but there is
evidence that gentamicin enhanced rather than
inhibited TNF production 3¢.

NORMAL HUMAN SERUM INDUCES
ENDOTOXIN

Normal human serum may by itself induce
endotoxin release. It should further be noted
that the composition of LPS subunits in the
outer membrane appeared to influence serum-
mediated LPS release. Pre-treatment of
Escherichia coli with various antibiotics prior
to treatment with normal human serum did not
modulate the LPS release. This may suggest
that a serum factor in vivo may contribute to
the effect of antibiotic-induced endotoxin
release, which is not yet detected 37. The isola-
tion process may induce differences among
in-vitro studies, as mononuclear cells may be
less responsive to further physiologic manipula-
tion 38,

RELEASE OF ENDOTOXIN
AND BACTERIAL LYSIS

Imipenem or imipenem plus tobramycin
induced an early increase of total endotoxin
from E. coli at 1 h. Total endotoxin levels
increased 5-fold after treatment with cef-
tazidime, tobramycin, or tobramycin plus
cefuroxime, 22-fold after treatment with
cefuroxime and 49-fold with aztreonam. Free
endotoxin levels increased 6-fold after 1 h
treatment with imipenem or imipenem plus
tobramycin or ceftazidime concomitantly with
rapid bacterial lysis. Cefuroxime or aztreonam
induced much higher endotoxin release causing
the formation of filamentous structures in
pathogens 3%. Rapid killing of E. coli by
amikacin and imipenem has been associated
with less endotoxin release than slow killing by
ceftazidime, aztreonam and cefotaxime. Rapid
killing produced less TNF release in mononu-
clear cells 0. Bingen et al did not observe an
increase in endotoxin release when amikacin
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was added to ampicillin and cefotaxime, which
resulted in accelerated killing of H. influenzae
41, Evidence against lysis-correlated LPS release
was presented by van den Berg et al who
demonstrated that after gentamicin bacterial
killing free limulus amebocyte lysate (LAL)
activity increased only moderately whereas
ciprofloxacin which was associated with fila-
mentation induced a 43- and 68-fold increase
in free LAL activity. The authors concluded
that LPS is released as long as E. coli remains
structurally intact 42, Following treatment of E.
coli with cefuroxime, aztreonam, and low dose
ceftazidime late bacterial lysis occurred associat-
ed with high levels of endotoxin, high dose cef-
tazidime and imipenem caused rapid lysis, for-
mation of spheroblasts and low endotoxin lev-
els. There was no difference in TNF release in
aztreonam or imipenem treated cultures. Low
dose treatment seems to induce higher TNF
release 43. Cefotaxime, ciprofloxacin, and
piperacillin caused significant endotoxin release
correlating with their ability to affect cell-wall
morphology, filamentation, and lysis.
Tobramycin induced almost no endotoxin
release and morphological changes when bacte-
ria were exposed to bactericidal concentrations
44, Treatment of Enterohemorrhagic Escher-
ichia coli (EHEC) strains with imipenem result-
ed in less endotoxin release than after treat-
ment with ceftazidime 5. Despite a rapid bacte-
ricidal effect cefotaxime treatment is followed
by endotoxin release which may be reduced up
to 66% by the addition of immunoglobulin G
46, Endotoxin liberation was found to be pro-
portional to the number of killed bacteria for
cefuroxime and tobramycin at each concentra-
tion level, justifying the endotoxin-liberating
potential to be expressed as release of endotox-
in per killed bacterium, which is independent of
inoculum size. Highest release was found after
cefuroxime and lower after tobramycin or the
combination of both. With increasing doses
there was a significant reduction in the endo-
toxin release. An unspecific binding of endotox-
in to tobramycin did not reduce endotoxin
release 47. There may be a difference in bacter-
ial cell wall products released by different antibi-
otics. Ceftriaxone-induced killing of
Haemophilus influenzae resulted in the
release of bacterial wall products, which were
more pro-inflammatory than that released by
imipenem 18,
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ANTIBIOTIC-INDUCED RELEASE
OF CYTOKINES

Antibiotics may differ in their effect on
cytokine release in human monocytes and lym-
phocytes. Sulbactam-ampicillin and cefaman-
dole induced IFN-y production, clindamycin
TNF and IL-6 release, lincomycin released 1L-4
and teicoplanin TNF, IL-1 alpha and IL-6 9.
Teicoplanin decreased in human whole blood
the endotoxin-induced release of IL-8, TNF and
IL-1beta 5. Cephalosporin antibiotics increased
histamine release induced by E. coli and
Staphylococcus aureus, whereas synthesis of
leukotrienes, IL-6 and TNF decreased °!.
Erythromycin and roxithromycin inhibited TNF-
release whereas ofloxacin, penicillin G, minocy-
cline or josamycin failed to inhibit TNF release
and may not have affected endotoxin release
52, Cefodizime induced a significant increase in
GM-CSF release, but did not affect IL-8 pro-
duction in cultured human bronchial epithelial
cells. Ceftriaxone had no effect on cytokine
production in this model 53. In human mono-
cytes ceftriaxone and ceftazidime failed to have
an effect on TNF, IL-6, or IL-8 release.
Cefodizime, however, significantly decreased
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TNF and IL-6 release and stimulated [L-8
release 34, Vancomycin downregulated TNF-
alpha production and inhibited TNF mRNA
accumulation in LPS stimulated monocytes 55.
RO-23-9424 significantly enhanced TNF
release from PMN compared with controls, but
reduced IL-1 and did not influence IL-8 release.
Cefotaxime significantly increased IL-1beta and
reduced IL-8 after 24 h. Lower concentrations
of cefotaxime reduced LPS-stimulated IL-8,
whereas fleroxacin enhanced IL-8 release 5°.
(Table 1)

DIFFERENCE IN STRAINS

Many studies focussed on the endotoxin
release in E. coli. However, antibiotic-induced
endotoxin release may also depend on the type
of strain. An increased liberation of endotoxin
after adding penicillin was observed in six of
the strains of Neisseria meningitidis, which
were known to have an enhanced capacity for
spontaneous endotoxin liberation 7. Eng et al
have discovered that the effect of antibiotics on
endotoxin release was organism dependent.

TaBLE 1 - Antibiotic-induced effects on cytokine release.

Antibiotic IFN-y TNF-a

IL-1

IL-4 IL-6 IL-8 GM-CSF

Sulbactam-ampicillin T
Cefamandole T
Clindamycin T

Lincomycin

-
—

Teicoplanin i
Erythromycin
Roxythromycin
Ofloxacin
Pencillin G
Minocycline
Josamycin
Cefodizime

Ceftriaxone

- O — © O O O &« ¢«

Vancomycin
Celfotaxime T

Fleroxacin

T
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Antibiotics showed no effect on S. aureus.
Imipenem, ofloxacin, ciprofloxacin and gentam-
icin released less endotoxin compared to ampi-
cillin-sulbactam, chloramphenicol, and aztreon-
am in E. coli cultures. The highest levels were
detected in controls and after ceftazidime treat-
ment. In Pseudomonas aeruginosa cultures
ceftazidime and imipenem released small
amounts of endotoxin, all other antibiotics
higher amounts. It could be demonstrated that
the amounts of endotoxin released were related
to the rate of bacterial killing 8. Antibiotic
class, presence of serum and type of organism
may influence bactericidal activity and endotox-
in release. Ceftazidime induced the highest rate
of endotoxin release in E. coli; amikacin and
ofloxacin had a favorable rate of endotoxin
release in relation to the amount of bacterial
killing. In P. aeruginosa, imipenem and
ofloxacin showed similar low ratios of endotox-
in release to bacterial killing 5%. Supernatants
from Staphylococcus epidermidis incubated
with beta-lactam antibiotics induced higher
TNF-levels than culture medium alone, van-
comycin or clindamycin. Human serum potenti-
ated supernatant-induced TNF-release. Soluble
peptidoglycan and teichoic acid contents were
proportional to TNF release 0. No increase in
endotoxin release during antibiotic killing of
meningococci was observed with penicillin or
ceftriaxone ©!. Differences in cytokine release
between Gram-positive and Gram-negative
pathogens were detected in ceftazidime and
imipenem induced killing of P. aeruginosa and
S. aureus 62, Morphology of pathogens and
endotoxin release may have a relationship. P.
aeruginosa exposed to biapenem showed a
longer oval-centered form and released more
endotoxin than imipenem, panipenem (spheri-
cal form) or meropenem (shorter oval-centered
cells). In all strains except P. aeruginosa car-
bapenems induced significantly less endotoxin
than ceftazidime 9. In contrast, Trautmann et
al did not detect a difference in endotoxin
release between imipenem and meropenem,
although meropenem binds to PBP-2 and -3
64 Trautmann concluded that morphological
changes in bacteria in the presence of antibi-
otics do not predict their LPS-liberating effect.
Ciprofloxacin caused low levels of endotoxin
despite filament formation 65, Horii et al recon-
firmed in another study that time-course and
magnitude of endotoxin release induced varied
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among carbapenems and also with regard to
morphological changes 6. Kishi et al reported
that treatment of E. coli with ceftazidime trans-
forms the rod shaped bacteria into filament
structures, which may be prevented by pre-
treatment with clindamycin ¢7. LAL and ELISA
confirmed low endotoxin releasing activity of
ciprofloxacin. LPS released had low bioactivity
in terms of TNF induction 8. In P. aeruginosa
imipenem showed a strong bactericidal effect
with less liberation of free LPS, but free LPS
levels increased after 8 h accompanied by a re-
growth of the organism ¢°. Round P. aerugi-
nosa cells treated with imipenem became sus-
ceptible to phagocytosis by peritoneal cells,
whereas long filamentous cells induced by cef-
tazidime treatment were hardly phagocytized.
The morphology was correlated to plasma
endotoxin levels 70,

RELEASE OF LIPOTEICHOIC ACID (LTA)

Inhibition of growth and lysis of a pathogen
may be induced via the inhibition of different
penicillin-binding proteins. Lysis of penicillin-
susceptible and -resistant strains was attributed
in part to the extensive loss of acylated lipotei-
choic acid from Enterococcus faecium into the
growth medium 7!, Beta-lactam antibiotics
enhanced the release of lipoteichoic acid (LTA)
and peptidoglycan (PG) in S. aureus cultures
whereas protein synthesis inhibitors did not
affect LTA and PG release. This was associated
with increased release of TNF-alpha and IL-10
in human whole blood 72. The sensitivity of
antibiotics may change with high temperature.
Cell wall antibiotics were only effective against
P aeruginosa when added to cells growing at
46°C prior to a temperature shift to 37°C 73,
Rapid release of teichoic acid and LTA was
detected after ceftriaxone and meropenem
treatment of different strains of Streptococcus
pneumoniae, low release after rifampicin and
quinupristine/dalfopristin 74, Antimicrobial
mechanism of action may affect the
macrophage pro-inflammatory mediator pro-
duction after stimulation with S. pneumoniae.
Oxacillin treatment leads to a significantly high-
er release of TNF than clindamycin 75.
Endotoxin activity was many times higher with
the Bacteroides fragilis sensu stricto than with
the rest of the Bacteroides spp., which may



ANTIBIOTIC INDUCED ENDOTOXIN RELEASE AND CLINICAL SEPSIS: A REVIEW 7 165

explain why this strain is associated with clinical
infections and higher morbidity. At 4 times
MIC cefoxitin and piperacillin/tazobactam
induced small amounts of endotoxin after 48 h
exposure whereas trovafloxacin, imipenem,
meropenem induced high levels of endotoxin
release 7°.

PENICILLIN BINDING PROTEIN SPECIFIC
ANTIBIOTICS

In 1992 Jackson and Kropp reported that
in P. aeruginosa cultures ceftazidime-induced
filamentations were associated with larger
quantities of bioreactive LPS than nonfilamen-
tous fast-lysing imipenem. The filtrated cef-
tazidime-induced endotoxin release induced a
higher mortality rate in mice when compared
to imipenem-induced endotoxin. The authors
concluded that in-vitro endotoxin release
depends on the site of action of the antibiotic
and that PBP 2-specific antibiotics induce less
endotoxin than PBP 3-specific antibiotics 77.
There was a quantitative but not qualitative dif-
ference in the efficacy of ceftazidime and
imipenem in mediating endotoxin release. In a
mouse model in which the animals were made
sensitive to the effects of endotoxin imipenem
provided a greater level of protection when
compared to ceftazidime 8. Yokochi et al
reported that treatment of bacteria induced
much lower levels of endotoxin release than
meropenem, both carbapenems and PBP 2-
specific antibiotics. Exposure of filtrates of P,
aeruginosa treated with imipenem to cells
caused low-level TNF-production and nitric
oxide, whereas meropenem induced high levels
%, This finding is supported by Arditi et al who
reported a difference in imipenem-induced IL-6
release in human vascular endothelial cells
when compared to meropenem and ceftriaxone
80, The mechanism of antibiotic-induced LPS
release is independent of PBP affinities for cef-
tazidime or imipenem. Once Salmoneila typhi
is killed by either imipenem or ceftazidime, the
rate of LPS release from S. typhi does not dif-
fer 81,

ANTIBIOTIC CONCENTRATION

LPS release may increase as a function of
the antibiotic concentration, reaching a maxi-

mum at the concentration that kills most of the
pathogens. Ceftazidime released 61.9%,
imipenem 51.1%, gentamicin 9.8% and
ciprofloxacin 12.7% of LPS within the first
hour of incubation. It was suggested that antibi-
otic-released and cell-bound LPS had a similar
O-polysaccharide content 82, The minimal
inhibitory concentration (MIC) of the studied
antibiotic may affect the quantity of endotoxin
released. At 50 times the MIC ceftazidime and
ciprofloxacin resulted in significantly higher lev-
els of endotoxin, TNF and IL-6 than those of
imipenem and gentamicin. However, at 0.5
times the MIC the differences were small. com-
parable to untreated controls 83,

In summary, antibiotic-induced endotoxin
release may depend on antibiotic class, pres-
ence of serum, type of organism, site of antibi-
otic action and Gram-stain. Endotoxin release
may be different in late or early lysis, propor-
tional to the number of killed pathogens.
Morphology of bacteria may have an impact on
endotoxin release and phagocytosis. {Table 2)

ANTIBIOTIC-INDUCED ENDOTOXIN
RELEASE - ANIMAL MODELS

Van Miert demonstrated that polymyxin B
produced an antipyretic effect in endotoxin-
induced fever by interaction with endotoxin 8.
Although polymyxin B delayed the dynamic
effects of endotoxin, e.g., systemic hypoten-
sion, decrease in cardiac output, it did not pre-
vent the initial metabolic acidosis following
endotoxin and the acute systemic hypotension
85, Endotoxemia may correlate with mortality.
However, the level of endotoxemia in antibiotic
treated animals (kanamycin) was significantly
greater than in animals dying without any
antibiotic therapy. It was concluded that amino-
glycosides might shift the lethal mechanism dur-
ing Pseudomonas mirabilis peritonitis from
those involving bacterial proliferation and low
levels of endotoxemia to those involving bacter-
jal death and the release of large amounts of
endotoxin. Corticosteroids may be able to pro-
tect those animals when endotoxin was added
86 Clindamycin, lincomycin and ceftazidime
treatment in an E. coli sepsis rat model is asso-
ciated with a 20-fold increase of plasma endo-
toxin concentration when compared to no
treatment 8. When methylprednisolone was
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TABLE 2 - Antibiotic-induced endotoxin release - in-vitro studies.

Antibiotic Number High
of studies endotoxin
Ciprofloxacin 9 4
Gentamicin 7 -
Tobramycin 6 -
Imipenem 26 1
Ceftazidime 20 18
Meropenem 11 1
Cefotaxime 5 5

Intermediate Low Filamentation
endotoxin endotoxin
1 4 Yes
2 5 No
- 6 No
q 21 No
1 1 Yes
8 2 Indeterminate

- - Yes

tested in a model with intraperitoneal adminis-
tration of E. coli, there was no difference
between methylprednisolone-treated and place-
bo-treated animals in bacteremia, endotoxemia,
and physiologic, metabolic and hematological
parameters 88, This was further analyzed by
Shenep et al who demonstrated that in animals
treated with placebo the concentration of free
endotoxin was proportional to the level of bac-
teremia. However, in animals treated with
antibiotics the plasma levels of free endotoxin
increased 10- to 2000-fold in spite of decreas-
ing levels of bacteremia .

Endotoxin liberation during therapy for sep-
sis caused by Gram-negative bacteria may be
dependent upon the class of antibiotics and not
necessarily correlated with the rate of bacterial
killing. Despite similar rates of bacterial killing,
mean levels of endotoxin were up to 20-fold
higher in rabbits treated with moxalactam than
in paired rabbits receiving gentamicin . Oral
administration of antibiotics, e.g., polymyxin B,
aztreonam, temocillin, cephalothin and
neomycin, may decrease endotoxin concentra-
tion in fecal supernatants to 1%. Antibiotics did
not interfere with the LAL test. It was conclud-
ed that in mice 90% of the feces derived endo-
toxin was released by intestinal aerobic Gram-
negative pathogens 2!, Intestinal endotoxin level
does not necessarily correlate with the level of
Gram-negative bacteria but corresponds to the
proliferative activity of these bacteria °2. Pre-
treatment with agents that alter gut content in
animals reduced endotoxemia, maintained nor-
mal glutamine and ammonia levels, and thereby
increased survival %3, Total parenteral nutrition
has been associated with translocation of endo-
toxin and pathogens, which resulted in
increased TNF production by alveolar

macrophages. The addition of polymyxin B
reduced endotoxemia and inhibited TNF release
94, Ampicillin decreased significantly the rate of
bacteremia in surviving animals but at the same
time increased the activity of free endotoxin
compared to controls 95. A comparison of
endotoxin release by different antimicrobial
agents in experimental E. coli meningitis
revealed that antibiotic therapy irrespective of
the agent might result in an increase in free
endotoxin and enhancement of inflammation.
The amount of endotoxin released may be
smaller than in untreated animals 96,
Depending on the inoculum level, cefoxitin
alone and not anti-TNF antibodies may prevent
death. However, when anti-TNF antibodies are
added to cefoxitin treatment in a murine model
of mixed E. coli and B. fragilis peritonitis, it
abrogated the rise in TNF and increased the
survival rate %7. Imipenem provided a greater
level of protection than ceftazidime in a mouse
bacteremia model °8. However, the protective
effect may not be due to an inhibition of the
endotoxin induced proinflammatory cytokine
release. Elevated TNF after cecal ligation and
puncture (CLP) in rats treated with antibiotics
was associated with enhanced hemodynamic
response to CLP, but did not increase mortali-
ty. Despite increases in circulating TNF after
antibiotic administration, the mortality rate
decreased after both bactericidal and bacterio-
static antibiotics. TNF levels and cardiac output
were elevated to a greater extent in bactericidal
treated rats than bacteriostatic or untreated rats
99, Evidence for endotoxin-induced pro-inflam-
matory response and its effect on survival were
reported by Yao et a! who prevented the
increase of TNF and IL-1 activities of peritoneal
macrophages by low dose polymyxin B which
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was followed by an enhanced survival rate '%.
Differences in protective efficacy among cef-
tazidime, imipenem, meropenem, were report-
ed for E. coli and P aeruginosa infection but
not in S. aureus infections 19!, Changing out-
come with different forms of strains — virulent
versus nonvirulent — cannot be solely attributed
to endotoxin release. Viable virulent strains
caused less endotoxin but more harm.
Virulence factors associated with E. coli strains
may be more important in the outcome of sep-
tic shock than endotoxin levels '92. In rabbit
Gram-negative sepsis the administration of
rBPI12 in conjunction with cefamandole pre-
vented the cefamandole-induced endotoxin
release. accelerated bacterial clearance, amelio-
rated cardiopulmonary dysfunction and thereby
prevented death 103,

Further evidence for antibiotic-mediated
endotoxin release as a contributing factor to
lethality in Gram-negative sepsis has been pre-
sented by Morrison and Bucklin 1. In the early
phase of therapy antibiotic-induced endotoxin
release may be influenced by the mode of
action of the antibiotics. Nitsche et al reported
that pharmacodynamics, e.g.. dosage, might
have an impact on endotoxin release as well.
Lowest levels of endotoxin in a peritonitis rat
model were measured in high dose
ciprofloxacin when compared to imipenem,
gentamicin, cefotaxime and low dose
ciprofloxacin. Except in the high dose
ciprofloxacin group, the endotoxin increase
was associated with a decrease in mean arterial
pressure 195, Topical applied imipenem in a rat
peritonitis model induced endotoxin and TNF
release despite profound bactericidal activity.
The survival rate was higher in the imipenem
treated group than the taurolidine group or
controls 1%, Unlike the dramatic increase in
endotoxin concentration after antibiotic treat-
ment in the cerebrospinal fluid during experi-
mental H. influenzae meningitis, there was no
endotoxin release visible subsequent to the
antibiotic treatment of experimental otitis
media 197, In-vitro treatment of P. aeruginosa
with imipenem caused low-level release of free
endotoxin, which was not lethal for D-GalN-
sensitized mice. Treatment with ceftazidime,
meropenem, and cefozopran caused high-level
release of endotoxin, which was lethal for D-
GalN-sensitized mice. There was a close rela-
tionship between free endotoxin and mortality
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108, |n experimental pneumococcal meningitis
trovafloxacin delayed the increase in pro-
inflammatory cytokines TNF and IL-1beta when
compared to ceftriaxone '%°. Doxycycline pro-
tected mice from lethal endotoxemia by reduc-
ing nitric oxide synthesis via an IL-10 indepen-
dent mechanism !9, Infections with E. coli,
Serratia marcescens, K. pneumoniae, P.
aeruginosa, Proteus vulgaris, and Proteus
mirabilis resulted in an increase of plasma
endotoxin concentration after antibiotic treat-
ment. Except for P. aeruginosa, the endotoxin
levels were lower after carbapenem treatment
than ceftazidime treatment. Treatment of P.
aeruginosa sepsis with meropenem or biapen-
em induced more endotoxin release than other
carbapenems !!!. Different levels of endotoxin
in platelet-rich plasma according to differential
affinity for penicillin-binding protein (PBP) were
detected in E. coli-inoculated mouse whole
blood ex vivo '2, Inflammatory response to
viable killed pathogens may differ depending on
the bacterium, the host sensitivity to TNF and
possible Gram-stain classification. S. aureus
killed during imipenem or ceftazidime treatment
elicited an early release of TNF. Protection with
dexamethasone was not seen when animals
were challenged with viable organisms but with-
out concurrent administration of antibiotics 13,

In summary, antibiotic-treated animals may
show higher endotoxin levels with a higher sur-
vival rate than untreated animals. Plasma endo-
toxin may increase despite decreasing bac-
teremia. There may be a similar killing rate by
different antibiotics but a difference in endotox-
in release. Intestinal endotoxin does not neces-
sarily correlate with the level of Gram-negative
bacteria. However, the alteration of the gut
content by pretreatment may be associated
with reduced endotoxemia and increased sur-
vival. Antibiotic-induced endotoxin release may
be different depending on the type of infection,
the location of infection, the virulence of
strains, Gram-stain, mode of application and
dosage of antibiotic. Different antibiotics may
induce the release of different forms of endo-
toxin which may be lethal for sensitized ani-
mals. The combination of antibiotics with
inhibitors of endotoxin or the pro-inflammatory
response may be responsible for increased sur-
vival due to decreased endotoxin release.



ANTIBIOTIC-INDUCED ENDOTOXIN
RELEASE - CLINICAL STUDIES

The information gathered by clinical studies
that antibiotic-induced endotoxin release may
have a significant effect on outcome leaves
space for speculation. It should be noted, how-
ever, that the treatment of a subgroup of
patients with sepsis or septic shock with
immunoglobulin preparations which are known
to interact with endotoxin has been successful
114 Arditi et al reported that ceftriaxone
induced a marked increase in free endotoxin in
the cerebrospinal fluid, which correlated with
number of bacteria killed. Initial CSF total
endotoxin concentrations correlated both with
the Herson-Todd clinical severity score and the
number of febrile days 1!5. Mean peak endotox-
in and IL-1 beta concentrations were signifi-
cantly higher in infants who received intraven-
tricular gentamicin and i.v. antibiotics than
infants given i.v. antibiotics alone. Mean IL-
lbeta concentrations in CSF correlated with
adverse outcome and endotoxin concentrations
116 Hurley et al demonstrated that the antibiot-
ic treatment of chronically bacteriuric patients
was associated with a decrease of CFU 2h after
antibiotic administration and an increase of
endotoxin 117, Erythromycin caused a signifi-
cant reduction in neutrophil numbers, IL-
8/albumin ratio and neutrophil elastase/albu-
min ratio in bronchoalveolar lavage fluid of
patients with chronic airways disease 8. In a
post-hoc analysis from a randomized study to
evaluate the efficacy of interferon gamma in
trauma patients it was observed that mortality
in the PBP 3/TNF group (17%) was higher
than in the non-PBP 3/TNF group (8%)
although the injury severity score was similar in
both groups %, Prins et al. detected that in
patients with urosepsis blood endotoxin levels
decreased after treatment with imipenem but
increased when patients received ceftazidime
120 [n patients with acute pyelonephritis of
Gram-negative origin cefuroxime administration
caused a rise in endotoxin, which was associat-
ed with persistence of fever in up to 50% of
patients. A positive correlation between endo-
toxin and drug levels was detected 6 h after ini-
tiation of therapy '2!. Clinical antibiotic-induced
endotoxin release did not occur after hepatic
resection regardless of the antibiotic used,
probably due to scavenging of endotoxin in

R.G. HOLZHEIMER

peripheral blood '22. In a randomized clinical
study comparing imipenem versus ceftazidime
in patients with Gram-negative urosepsis there
was no difference in plasma endotoxin, IL-6 or
TNF levels detectable 123, In contrast. cef-
tazidime treated patients with severe melioido-
sis had greater endotoxin levels than imipenem
treated patients after the first dose of antibi-
otics. Mortality was 35% in both groups and
not different 124, In surgical intensive care
patients in a German university center there
were significantly more patients with endotox-
emia when treated with cefotaxime/ceftriaxone
when compared to patients treated with
imipenem. However, there were no differences
among the groups in temperature, APACHE I
scores, leukocytes, albumin, blood pressure and
heart rate after antibiotic administration.
Endotoxin neutralizing capacity (ENC) was sig-
nificantly different in patients treated with
imipenem when compared to patients with
cefotaxime treatment. This is in agreement
with a significantly greater decrease of IL-6 in
the imipenem group compared to the cefo-
taxime and ceftriaxone group !2%. In a
European multi-center study in surgical inten-
sive care patients there was no difference in
plasma endotoxin levels in patients treated with
imipenem compared to PBP 3-specific antibi-
otics. However, patients who were treated with
imipenem were in general associated with high-
er MOF scores and IL-6 levels decreased faster
when compared to patients treated with PBP
3-specific antibiotics. Despite higher MOF
scores the mortality was similar in both groups
126

[n summary, the clinical significance of
antibiotic-induced endotoxin release is docu-
mented only in a few clinical disorders, e.g..
meningitis, urosepsis. The difference in endo-
toxin release by PBP 2-specific antibiotics, e.g.,
imipenem, and PBP 3-specific antibiotics, e.g.,
ceftazidime, may not be visible in each study.
Patients with increased MOF scores may profit
from treatment with antibiotics known to
decrease endotoxin.

CONCLUSIONS

In conclusion, the clinical significance of
antibiotic-induced endotoxin release remains to
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be clarified. Type of pathogen and its virulence
may be more important than recently suggest-
ed. Gram-positive pathogens were just recently
recognized as an important factor for the devel-
opment of the host response. Multi-drug strate-
gies are necessary to inhibit the synergistic
mechanism causing tissue damage and organ
failure in sepsis and peritonitis ¥7. In case of
fever of unknown origin in intensive care
patients either failure of treatment, e.g., failure
of source control in intra-abdominal infection,
or a side effect of antibiotic treatment, e.g.,
endotoxin release, should be considered as
cause of the fever.
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